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Abstract
Confined magnetic Ising films in a L × D geometry (L � D), with short-range
competing magnetic fields (h) acting at opposite walls along the D-direction,
exhibit a slightly rounded localization–delocalization transition of the interface
between domains of different orientations that runs parallel to the walls. This
transition is the precursor of a wetting transition that occurs in the limit of
infinite film thickness (L → ∞) at the critical curve Tw(h). For T < Tw(h)

(T > Tw(h)) such an interface is bounded (unbounded) to the walls, while right
at Tw(h) the interface is freely fluctuating around the centre of the film.

Starting from disordered configurations, corresponding to T = ∞,
we quench to the wetting critical temperature and study the dynamics of
the approach to the stationary regime by means of extensive Monte Carlo
simulations. It is found that for all layers parallel to the wall (rows), the row
magnetizations exhibit a peak at a time τmax ∝ L2 and subsequently relax to the
stationary, equilibrium behaviour. The characteristic time for such a relaxation
scales as τR ∝ L4, as expected from theoretical arguments, that are discussed
in detail.

1. Introduction

The critical behaviour of confined materials is rather different from bulk criticality due to
the subtle interplay between finite-size and surface effects. Within this context, the study of
the critical properties of confined systems has attracted considerable attention over the last
decades [1–13]. The interaction of a saturated gas in contact with a wall or a substrate may
result in the occurrence of interesting wetting and capillary condensation phenomena, where a
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Figure 1. Sketch of the phase diagram of the bulk system (solid curve), which exhibits two-
dimensional Ising behaviour at the critical temperature Tcb, and the behaviour of the confined
system (dashed curve). The temperature T (ordinate) and the average magnetization M (abscissa)
are chosen as independent variables. As the confined system is only quasi-one-dimensional, there
is no true thermodynamic transition. The pseudo-critical point is located at Tc(h, L) which differs
from the well defined wetting transition temperature Tw(h) only by a term which is very small for
large film thickness L . The dashed curve describes phase separation on the length scale smaller
than the equilibrium domain size that results in this system.

macroscopically thick liquid layer condenses at the wall, while the bulk fluid may remain in
the gas phase [14–18]. The understanding of the wetting of solid surfaces by a fluid is of
primary importance for many technological applications (lubrication, efficiency of detergents,
oil recovery in porous material, stability of paint coatings, interaction of macromolecules with
interfaces, etc [14, 19–21]).

Wetting transitions are also observed when a magnetic material is confined between
parallel walls where competing surface magnetic fields act. We consider an Ising film [22, 23]
which is confined between two competing walls a distance L apart from each other, such that
the surface magnetic fields, h, are of the same magnitude but opposite directions [5, 6, 12, 13].
Close to the critical temperature Tcb of the bulk, domains of opposite magnetizations gradually
build up at the corresponding walls and stabilize an interface which fluctuates around the centre
of the film. Upon reducing the temperature further one encounters an interface localization–
delocalization transition. Below the L-dependent transition temperature, Tc(L, h), the system
laterally phase separates into domains, in which the interface is localized either at the right- or
the left-hand wall. This transition can be of second or first order, and we restrict ourselves
here to a critical interface localization–delocalization transition. The qualitative behaviour is
illustrated in figure 1. This interface localization–delocalization transition is a precursor of the
true wetting transition Tw(h) of the infinite system. In fact, the difference Tw(h) − Tc(L, h)

vanishes exponentially fast upon increasing the film thickness L for d = 3 dimensions.
Intriguingly, the universality class for the static critical behaviour of the interface

localization–delocalization transition of a d-dimensional system corresponds to the (d − 1)-
dimensional bulk system [24]. This behaviour has been confirmed for the static critical
behaviour in three dimensions. In contrast to the considerable effort directed towards
understanding their critical behaviour under equilibrium (stationary) conditions, little attention
has been drawn to the study of the dynamical approach of films to their equilibrium states. In
order to overcome this gap the aim of this manuscript is to present an extensive numerical study
of quenching experiments close to the pseudo-critical point of the confined system that are
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performed starting from fully disordered configurations (T = ∞). Does the relation between
critical behaviour of the interface localization–delocalization transition in d dimensions and
the bulk ordering in d − 1 dimension also hold for the kinetics?

The study of nonequilibrium relaxation right at the critical point is of great interest for
several reasons: first of all, critical dynamics of bulk kinetic Ising models (with no conserved
quantities) is a topic of longstanding discussion [25–32]. In particular, the value of the
critical exponent z that describes the divergence of the relaxation time τ characterizing the
asymptotic decay of order parameter fluctuations at criticality (τ ∝ ξ z where ξ is the correlation
length of order parameter fluctuations) has been controversial for a long time [33]. One now
believes that for the short-range two-dimensional Ising model z is known rather precisely [31],
z = 2.169 ± 0.003 for single-spin-flip dynamics—the same dynamics as we shall use in
the following. Hence, one could expect this exponent also to ultimately describe the critical
dynamics of the interface localization–delocalization transition in thin, three-dimensional Ising
films with competing walls, since this phase transition belongs to the d = 2 Ising class.

The standard discussions of critical slowing down [34] all consider the dynamics of
fluctuations in spatially homogeneous systems close to the bulk critical point at Tcb. Here
however, we consider a system at Tc(L, h) ≈ Tw(h) < Tcb that is always spatially very
inhomogeneous, containing regions of positive and negative magnetization separated by an
interface (see snapshots in figure 4). While the universality of the static behaviour requires
the type of the order parameter (i.e. a single scalar quantity, the average magnetization in a
column perpendicular to the wall) to be identical, the universality of the dynamic behaviour
poses additional requirements (e.g., a single-spin-flip algorithm has a different dynamic critical
exponent z than a cluster algorithm). Hence, one could intuitively expect that the problem
may be related to the dynamics of growing wetting layers at surfaces [35] and the dynamics
of capillary waves [36]. Furthermore, we note that in the static behaviour the Ising regime
around Tc(L, h) is extremely small for large film thickness L. Generally, there is a crossover
from Ising to mean field behaviour further away from the critical point. The extension of
a reduced temperature interval around the critical point where Ising critical behaviour is
observable can be quantified by the Ginzburg number, Gi. While in the bulk ordering with
short-range interactions the Ginzburg number is of order unity [37], it vanishes exponentially
with the film thickness L in the case of an interface localization–delocalization transition for
three-dimensional films [24, 38] and two-dimensional films [39]. (In the latter case, there
occurs a rounded transition [8] from the state with a delocalized interface to the state that
contains domains with localized interfaces in this Ising critical region, and these domains are
exponentially large in L in the direction along the boundaries.)

An additional motivation for the study of nonequilibrium relaxation at criticality is that for
standard critical phenomena in the bulk such studies also allow accurate estimates of various
static critical exponents [40–46]. For example, the static structure factor S(k, t) of an Ising
magnet is predicted to scale as [40]

S(k, t) = [�(t)]γ /ν S̃(k�(t)), �(t) ∝ t1/z (1)

where γ , ν are the critical exponents of the susceptibility and �(t) is a kind of dynamically
growing correlation length, respectively. For standard systems in the bulk, relations such as
equation (1) seem to hold at rather short times already [45]. Thus, it is interesting to test
relations similar to equation (1) also for the interface localization–delocalization transition.

As a first step, we study a two-dimensional system and assume a single-spin-flip kinetic
Ising model which does not conserve the order parameter. In d = 2 dimensions, one considers
a strip of finite width L confined by straight line boundaries. In two-dimensional Ising films
no truly long-range order develops for finite temperatures, because the system is infinitely
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Figure 2. Illustration of the geometry of the simulated system.

extended in one spatial direction only (quasi-one-dimensional) [48]. For the one-dimensional
Ising model the true transition occurs at T = 0, and the Glauber dynamics of the kinetic Ising
model in one dimension is known exactly. At the critical temperature, Tcb(d = 1) = 0, one
finds τ ∝ ξ2, i.e., z = 2 [49].

In this work, however, we consider the ordering at the finite wetting transition temperature
Tw(h) of the two-dimensional Ising model, since Tw(h) can be taken as an effective transition
temperature of the rounded interface localization–delocalization transition of the thin film.
Since the system is quasi-one-dimensional one expects that the interface localization–
delocalization transition at Tc(h, L) is rounded. For large L the rounding of this transition
is so small that practically it can hardly be distinguished from a sharp phase transition at
Tw(h). The disadvantage of the rounding in a quasi-one-dimensional system is outweighed by
the exact knowledge of the wetting transition temperature due to work by Abraham [47] and
the ease of visualization of the system configurations.

The manuscript is organized as follows: after a short description of the theoretical
background, we describe in section 3 the numerical procedure for the simulation of the Ising
model in confined geometries. The results are presented and discussed in section 4, while the
conclusions are summarized in section 5.

2. Theoretical background

We consider the time evolution of a d-dimensional thin Ising film of thickness L confined by
competing walls (cf figure 2) after a quench from T = ∞ (where the spin configuration is
completely disordered) to T = Tc(h, L) (=Tw(h) here). As explained for d = 2, the system is
quasi-one-dimensional and the critical interface localization–delocalization transition rounded
off. In a strict sense, in d = 2, there is no thermodynamic transition at the pseudo-critical
temperature Tc(h, L) and different quantities (e.g. specific heat or magnetic susceptibility) used
to locate the effective transition temperature will yield different estimates. The difference
between these estimates, the extent of the rounding in the temperature, and the difference
between the pseudo-critical temperature Tc(h, L) and the wetting critical temperature Tw(h)
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is of the same order and vanishes fast with the film thickness L. Instead of locating an
effective, pseudo-critical temperature Tc(h, L), we define the pseudo-critical temperature as
Tc(h, L) ≡ Tw(h) using the exact analytical expression for the wetting transition of the two-
dimensional Ising model [47]. L denotes the thickness of the film and D characterizes the
extension in the remaining d − 1 directions. The number of lattice sites is N = L Dd−1. In
d > 2, of course, a well defined Tc(h, L) distinct from Tw(h) exists [6, 8, 38], but this case is
not considered in the present simulational study.

For the time evolution, we expect several distinct stages: in the first stage, small domains
with magnetizations ±mb (where mb denotes the spontaneous magnetization of the Ising
model in the bulk at the considered temperature Tc(h, L) < Tcb) are growing everywhere in
the system, except in the layers directly adjacent to the walls, where rather a uniform layer with
a magnetization that has the same sign as the surface field may grow. Note, however, that the
growth of the layers is not related to the wetting layer growth considered by Lipowsky [35],
since in the latter work one rather considers growth of wetting layers at the surface of a semi-
infinite system which is in thermal equilibrium at the coexistence curve in the bulk, with
uniform magnetization far away from the surface, and one assumes the temperature T to be
larger than the wetting transition temperature, Tw(h). Furthermore, the system in the bulk is
highly nonuniform. The dynamics resembles somewhat the intensively studied problem of
surface-directed spinodal decomposition [50–56]. However, in the latter problem the order
parameter is conserved, while in the present problem it is not, and both for the problem of
critical dynamics [34, 57] and the problem of the growth of domains in the bulk for T < Tcb

(also called ‘phase ordering dynamics’) [40, 57–59] it is known that the presence or absence
of conservation laws has a major effect on the observed laws for relaxation and/or growth.
In particular, for the case where no conservation law whatsoever applies, such as the single-
spin-flip kinetic Ising model [25–33, 41, 49] or related field-theoretical ‘model A’ [34], there
is consensus that linear dimensions �(t) of domains in the bulk grow with the Lifshitz [60]–
Cahn–Allen [61] law,

�(t) ∝ t x , x = 1/2 (2)

and the equal-time structure factor S(k, t),

S(�k, t) = 1

N

〈∑
r,r′

exp[i�k · (r − r′)]σr(t)σr′(t)

〉
, (3)

where σr denotes the spin variable at site r, grows as [57–59]

S(�k, t) = [�(t)]d S̃(k�(t)). (4)

S̃(ζ ) is a scaling function with a maximum at ζ = 0 (remember that �(t) can be defined by
S(k = �−1(t), t) = S(0, t)/2, see for instance [40]). By the average in equation (3), we denote
an average over many statistically independent realizations of the time evolution with different
initial conditions that all correspond to temperature T = ∞. This average is necessary, since
S(�k, t) is not self-averaging [62]. Note that S(�k, t) is normalized such that for an initial random
starting configuration S(�k, 0) = 1, since only the terms r = r′ contribute, and σr = ±1 with
equal probability. We also recall that [40] S(0, t) = N〈[M(t)]2〉, where M(t) denotes the
time-dependent magnetization

M(t) = 1

N

∑
r

σr(t). (5)

Therefore, one concludes that N〈[M(t)]2〉 = [�(t)]d S̃(0), and since S̃(0) is a constant of
order unity which we may absorb in the scale of �(t), one may alternatively define �(t) as



3858 E V Albano et al

follows [40]:

�(t) = (N〈[M(t)]2〉)1/d . (6)

Note that equation (3) does not subtract a term 〈σr(t)〉〈σr′ (t)〉, and hence S(k, t) for t → ∞
is not dominated by the standard structure factor in equilibrium, S(k) = (1/N)

∑
r,r′, exp[i�k ·

(r − r′)][〈σrσr′ 〉 − 〈σr〉〈σr′ 〉], which only would be a correction to equation (4), but rather by
a δ-function at k = 0 representing long-ranged order. Equation (4) describes the rounding of
this δ-function (i.e. Bragg peaks) by the finite domain size.

From equations (2) and (6) one predicts that in the very early stages of the quench to
T < Tcb, where �(t) � L and no interface running parallel to the walls separating positive
and negative magnetization has yet been established, one observes bulklike two-dimensional
phase ordering dynamics for T < Tcb and a scaling with a trivial exponent

〈[M(t)]2〉 ∝ N−1td/2 = N−1t (d = 2). (7)

However, when �(t) has grown to about the size L/2,an interface starts to develop,and domains
start to grow that are very anisotropic in shape, with linear dimensions in the directions parallel
to the wall much longer than perpendicular to it. Then the system approaches its equilibrium
and the static critical behaviour is characterized by the (d − 1)-dimensional Ising universality
class. If d > 2 and hence a well defined non-zero critical temperature Tc(h, L) exists, one
could speculate that in this regime equation (1) should hold, i.e.,

〈[M(t)]2〉 ∝ N−1tγ /zν = N−1t (d ′′−2β/ν)/z , (8)

where hyperscaling relations [63] have been used, d ′′ = d − 1 being the dimensionality of
the system in the directions in which the system is still infinite, and also the critical exponents
β, γ, ν, z should be that of a (d − 1)-dimensional system. However, our system is quasi-
one-dimensional, d ′′ = 1. The kinetics exponents for d ′′ = 1 are known exactly [49], but this
ordering kinetics rather corresponds to a quench to T = 0 and not to Tw(h). As a consequence,
it is still completely unknown what growth law one should expect to hold instead of equation (8)
in our case (d = 2) where we quench to T = Tw(h), at times where l(t) exceeds the size L/2
(in the direction parallel to the walls).

Alternatively, we consider the very late stage of approach to equilibrium, where the order
parameter profile across the film develops towards its equilibrium shape. Assuming that the
important fluctuations are those of the interface that runs between regions that already have the
bulk average magnetization, we are tempted to extend the description of the transition in terms
of the capillary wave Hamiltonian [24, 38, 8] to the dynamics. In fact, this yields a model of
the type considered by Grant [36], in d dimensions,

∂h( �ρ, t)

∂ t
= −D∗ δF

∂h( �ρ, t)
+ η( �ρ, t) with F[h] = 

2

∫
dd−1ρ (∇h)2 (9)

where h(ρ, t) is the local position of the interface, measured relative to its mid-point z∗ = L/2,
ρ = (x, y) is a coordinate in the directions parallel to the interface, and 1/D∗ is a constant
setting the timescale. Grant employed a capillary wave Hamiltonian F , where  denotes the
interfacial stiffness. η is a random force that satisfies the dissipation–fluctuation relation

〈η( �ρ, t)η( �ρ ′, t ′)〉 = 2kBT D∗δ( �ρ − �ρ ′)δ(t − t ′). (10)

While Grant [36] considered a freely fluctuating interface, we here have to include the
effect of the wall potentials. Above the critical temperature of the interface localization–
delocalization transition T > Tc(h, L), these wall potentials are responsible for making the
correlation length ξ‖ of interfacial fluctuations parallel to the wall finite [24, 38]. However, right
at Tc(h, L) one recovers within the linear mean-field description of the interface localization–
delocalization transition capillary waves on all length scales, such that the problem reduces
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exactly to the same problem as studied by Grant [36], apart from the fact that he studied the
growth of the width W (t) of an initially flat interface with time, obtaining

W (t) ∝ t (3−d)/4. (11)

In our case, this result could apply only as long as W (t) < L, since the interface is confined
between the two parallel walls. Hence, one concludes that W (t) for an initially flat interface
grows at Tc(h, L) until a time τR defined from W (t = τR) = L/2, which yields

τR ∝ L4. (12)

It is tempting to assume that the same timescale τR also controls the dynamics to equilibrium
here. Then, the dynamics of interface fluctuations also controls the relaxation time of the
magnetization.

3. The confined Ising ferromagnet with competing fields and the Monte Carlo
simulation method

The Hamiltonian H corresponding to the Ising model with competing surface fields in a
confined geometry of size L × D (L � D) (cf figure 2) is given by

H = −J
D,L∑

〈i j,mn〉
σi jσmn − h1

D∑
i=1

σi1 − hL

D∑
i=1

σi L , (13)

where σi j are the Ising spin variables at the site of coordinates (i, j) and they may assume two
different values, namely σi j = ±1. J > 0 is the coupling constant of the ferromagnet and the
first sum of equation (13) runs over all the nearest-neighbourpairs of spins such that 1 � i � D
and 1 � j � L. The second (third) sum corresponds to the interaction of the spins placed
at the surface layer j = 1 ( j = L) of the film where a short-range surface magnetic field h1

(hL ) acts. Open boundary conditions are assumed along the D-direction of the film where the
fields act. In this manuscript, only the case of competing surface fields such that h1 = −hL ,
in the absence of any bulk magnetic field, is considered. So, hereafter h = |h1| = |hL | will be
used generically to specify the short-range surface magnetic field that is measured in units of
the coupling constant J .

The evolution of the Ising film is simulated using the standard Metropolis algorithm. The
time is measured in Monte Carlo steps (mcs), such that during one mcs we attempt to flip all
L × D spins of the sample once on average. The Ising magnet in two dimensions and in the
absence of any external magnetic field undergoes a second order order–disorder transition at
the Onsager critical temperature kBTcb/J = 2/ ln(1 +

√
2) = 2.269 . . . [23]. In the following,

temperatures are reported in units of Tcb.
Simulations are started using disordered configurations with zero initial magnetization

(m0 ≡ 0). Subsequently, the dynamic approach to the stationary regime is followed measuring
relevant quantities (see below) and taking averages over many different initial configurations.
For a suitable range of fields and temperatures, the formation of an interface between magnetic
domains of opposite directions running along the film is observed. Such an interface undergoes
a localization–delocalization transition (as the temperature is raised keeping h constant). This
interface localization–delocalization transition is the signature of the wetting phase transition
taking place in the limit L → ∞. The wetting phase diagram has been calculated exactly by
Abraham [47], yielding

exp(2J/kBT ) · [cosh(2J/kBT ) − cosh(2hc/kBT )] = sinh(2J/kBT ), (14)

where hc(T ) is the critical surface field (the inverse function of the wetting temperature Tw(h)).
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Figure 3. Linear–logarithmic plot of the row magnetization m( j, t) versus time (measured in
mcs). Note that each row is identified on the right-hand side of the figure. Results obtained for
hw = 0.7229 and Tw = 0.700, that corresponds to a critical point of the wetting phase diagram
according to Abraham [47]. The lattice size is L = 20, D = 1024, and results are averaged over
1000 different initial conditions. The dashed curve shows the location of the maxima of the row
magnetization and has been drawn to guide the eyes. In the inset the data are plotted versus t/j2

( j being the row index).

The magnetization in layers parallel to the walls (rows) measured along the L-direction
and averaged over the D-direction is given by

m( j, t) =
〈

1

D

D∑
i=1

σi j(t)

〉
(15)

where 〈〉 corresponds to averages taken over different realizations of the quench. The row
magnetizations describe the magnetization profiles m( j), 1 � j � L, for any desired time t .

Also, the kth moment of the magnetization of the film is measured as

mk(t) =
〈[

1

L D

D∑
i=1

L∑
j=1

σi j(t)

]k〉
. (16)

4. Results and discussion

Figure 3 shows linear–logarithmic plots of the row magnetization m( j, t) versus time, obtained
by starting from disordered configurations. The dynamical evolution has been followed at the
critical point (Tw = 0.7, hw = 0.7229) of the wetting phase diagram given by equation (14).
This choice of temperature (Tw = 0.7) is arbitrary; in principle the behaviour is the same in
the whole regime 0 < T < Tcb. However, we want to avoid temperatures close to Tcb (then the
bulk correlation length would be large) and we also want to avoid low temperatures where the
interface would become non-rough over rather large scales. It is observed that within a short-
time regime the absolute value of the row magnetization m( j, t) increases monotonically, and
reaches maximal values at a certain time τmax, that is almost independent of the row j . This is a
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(a) (b) (c) (d)

Figure 4. Typical snapshot configurations obtained during the dynamic evolution of the film
towards the stationary state. The lattice size is L = 20, D = 512 and the snapshots were obtained
for hw = 0.7229 and Tw = 0.700. (a) t = 10 mcs, (b) t = 80 mcs, (c) t = 300 mcs and
(d) t = 20 000 mcs. Note that the scale of the coordinate along the films is chosen as a factor of 6.4
smaller than the scale perpendicular to the film.

surprising, unexpected result. Subsequently, |m( j, t)| decreases, reaching a plateau during the
long-time regime, that corresponds to the (averaged) stationary values of film magnetization.

Qualitatively, the behaviour of the row magnetization can be understood with the aid of
snapshots of configurations shown in figure 4. At very early times (t = 10 mcs in figure 4(a)),
a sequence of magnetic domains with up and down orientations, running along the L-direction,
are observed. During this initial regime the time evolution of the absolute value of the row
magnetization depends on the scaling variable t/j 2 as shown in the inset of figure 3. In the bulk,
one has a situation similar to that observed in the absence of fields close to bulk criticality [2, 3].
However, at this stage the surface fields cause the onset of spins nucleating (parallel to each
field) in the ultimate vicinity of the surfaces, while these fields are still not relevant at the
centre of the film. The overall effect is a minor increase of the magnetization close to the
surface of the films while the magnetization of the bulk remains negligible (see figure 3). For
t = 80 mcs (figure 4(b)) a rough interface between domains of spins up and down has emerged.
The nucleation of spins close to the surface still continues and the surface fields start to play
a role in the centre. Due to these effects the absolute value of the magnetization of all rows
increases (see figure 3). Even at this stage, domains attached to the surfaces and having opposite
orientations develop almost independently from each other. At t = 300 mcs (figure 4(c)) the
row magnetizations reach maxima for all rows, indicating the onset of interference between
the domains growing attached to opposite surfaces. Then, an interface that runs parallel to the
surfaces has formed. It is smoother than in equilibrium, yet the excursions are of the order of
the film width, L. After this stage and for the stationary state, t = 20 000 mcs in figure 4(d),
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Figure 5. Log–log plots of the second moment of the magnetization m2(t) versus time (measured
in mcs). Results obtained for hw = 0.7229 and Tw = 0.700 and using lattices of different width
L , as shown in the figure. The full lines show the behaviour according to equation (7). The arrows
show the location of the maxima of the row magnetization and have been drawn to guide the eyes.
The data are shifted along the vertical axis for the sake of clarity.

excursions of the interface up to the boundaries of the film are built up and cause a small
decrease of the row magnetization (see figure 3). The occurrence of the maxima in the row
magnetizations corresponds to the presence of a plateau in the log–log plot of m2(t) versus t
(cf figure 5), while for much shorter times the relation (cf equation (7)) m2(t) ∝ t is verified
in figure 5.

Assuming a diffusive-like behaviour in the development of correlations within domains
attached to the surfaces, as discussed previously along the description of the results shown in
figure 4 and also suggested by the scaling observed in the inset of figure 3, it may be expected
that the time at the occurrence of the maxima should be linked to the lattice width according
to the following relationship:

τmax ∝ L2. (17)

Figure 6 shows that a plot of τ
1/2
max versus L gives a straight line, confirming the proposal of

equation (17). Note that we observe at short times a two-dimensional growth characteristic
for bulk ordering at T < Tcb. As the strength of the surface interactions corresponds exactly
to a second-order wetting transition, they are not strong enough to nucleate a single-domain
layer of spins with sign that corresponds to the wall interaction, which then grows and extends
further into the film. Only for stronger surface fields or higher temperature, T � Tw(h), could
one expect a diffusive growth of a laterally homogeneous layer of spins at the walls, which
would then lead to τmax ∝ � j 2, where � j denotes the distance from the surface.

At the wetting temperature Tw(h) and within the stationary regime, the magnetization
profile is simply linear [64] and it is given by

m( j) = mb(−1 + 2 j/L), (18)

except in the immediate vicinity of the boundaries. In equation (18), mb is the bulk
magnetization of the Ising model at T = Tw(h). Defining the width W of the interfacial
profile as the second moment of the profile [65], it follows that W ∝ L [66].
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Figure 6. Plot of τ
1/2
max versus L . Data obtained for hw = 0.7229 and Tw = 0.700.

Figure 7(a) shows that the magnetization profiles obtained numerically are, in fact, linear in
agreement with the theoretical calculations [64]. Of course, for very small L such as L = 10
and 14 corrections to scaling occur, as expected. However, during the dynamic evolution
towards the stationary state and particularly when the row magnetization exhibits a maximum,
the magnetization profiles adopt a sigmoidal shape, as shown in figure 7(b). This quantifies
the observation that the interface in this intermediate regime is smoother than in equilibrium
(cf figure 2(c)). These profiles are fitted quite accurately by means of error functions and the
interface width resulting from the fits depends linearly on L (see the inset of figure 7(b)). In
this transient regime far from equilibrium a simple scaling behaviour of the profile does not
seem to hold.

As observed in figure 3, for t > τmax the row magnetization exhibits a decay until the
stationary regime is established. It has been found that, in all cases, such a decay can be well
fitted by an exponential relaxation of the form

m(t) = �m exp(−(t − τmax)/τR) + ms, (19)

while a power-law decay can safely be ruled out. In equation (19) ms is the row magnetization
in the stationary regime, τR is the relaxation time and �m = mmax − ms, where mmax is the
maximum value of the row magnetization (i.e. measured at t = τmax). So, fitting the data using
equation (19), as shown in figure 8, the relaxation time can be obtained.

The relaxation of the magnetization to its equilibrium value goes along with the
equilibration of the smooth interface position around τmax to the strongly fluctuating one at
longer times. Hence, the dynamics of interface fluctuations described by equation (12) sets
the timescale and we expect that τR may depend on the lattice size according to τR ∝ Ln

with n = 4. As shown in figure 9, n = 4 yields a good fit. The exponential decay of the
row magnetization is also observed above the wetting critical curve, i.e. for hw = 0.7229
and T > Tw = 0.700, and the dependence of the relaxation time on the lattice size is also
compatible with equation (12), as shown in figure 9.
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Figure 7. Plots of the magnetization profiles m( j) versus j for lattices of different width. (a) Data
obtained during the stationary regime for hw = 0.7229 and Tw = 0.700. (b) As in case (a) but
measured at τmax when the row magnetizations exhibit a maximum. The inset shows the dependence
of the interface width (W ) on L . Note that the lattice rows were labelled from 1 to L and, hence,
the film centre is at L/2 + 1/2. Therefore, 1/2 needs to be subtracted from the row index j in the
scaling representation.

5. Conclusions and outlook

A numerical study of the dynamical approach to the stationary regime at Tw(h) for confined
Ising films with antisymmetric surface fields reveals that the row magnetizations exhibit a
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for t > τmax, versus t obtained for lattices of different width as indicated in the figure. The solid
curves correspond to the best fits of the data using equation (19).
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Figure 9. Plots of τ
1/4
R versus L as obtained by fitting the magnetization decay of the first row

(see also figure 8). Data obtained keeping hw = 0.7229 constant and two different temperatures
Tw = 0.700 and T = 0.75, respectively. The solid lines have been draw to guide the eyes.

peak at a time τmax ∝ L2. The kinetics in the initial stage corresponds to a diffusive growth
of domains, which resembles the bulk (d = 2) kinetics at T < Tcb. This result suggests a
diffusive-like propagation of the influence of the magnetic fields acting along the walls towards
the bulk of the film,where the interface between domains of spins with opposite directions starts
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to emerge. At the stage where the row magnetizations adopt their maxima, the configurations
consist of two domains of opposite magnetization at the respective walls, which are separated
by an interface. This interface runs parallel to the walls and exhibits smaller fluctuations of
the interface position than in equilibrium. After the maxima, the row magnetizations relax
exponentially with a characteristic time τR ∝ L4 as suggested by theoretical arguments. In the
stationary state at Tw(h), the excursions of the interface are on the order of the film thickness
itself.

We have restricted ourselves to two-dimensional films. In three dimensions the behaviour
might be even richer. According to the short-time dynamic scaling Ansatz [45, 46] for quenches
to the critical temperature Tc(h, L), the second moment of the magnetization should behave
as

m2(t) = tc2 with c2 = (d − 1 − 2β/ν)/z, (20)

during some intermediate period. The interface localization–delocalization transition in d = 3
dimensions corresponds to the two-dimensional Ising universality class. Hence, one has
β = 1/8 for the critical exponent of the order parameter and ν = 1 for the correlation length
exponent in the direction parallel to the interface, while the dynamic exponent of the Ising
model is given by z � 2.169 [31]. So, using these estimates in equation (20) one would obtain
c2 � 0.808. Equation (20) implies that the idea that the interface localization–delocalization
transition of an Ising film in d dimensions belongs to the universality class of the (d − 1)-
dimensional Ising model can be carried over to the dynamics. We plan to study this problem
in future work.

The dynamical behaviour of the confined Ising magnet with competing fields exhibits
a rich ordering behaviour. Within this context, an extensive numerical study of the short-
and long-time dynamics, aiming at an independent estimation of the critical exponents, is in
progress.
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